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Abstract 

The application of the condition that a true set of 
phases for a substantial subset of normalized structure 
factors should satisfy Sayre's equation leads to a 
phase-refining equation called the Sayre tangent for- 
mula. Phases refined by this formula tend to satisfy 
Sayre's equation for a subset of E's containing some 
of large magnitude and some of small (ideally zero) 
magnitude. Trials indicate that the new formula, 
incorporated into a computer program SAYTAN, is 
more effective than MULTAN80, especially for sym- 
morphic structures. 

Introduction 

The tangent formula (Karle & Hauptman, 1956) has 
played a central role in the development of direct 
methods. It allows phases to be refined, in an iterative 
fashion, such that they are increasingly consistent 
with the three-phase relationships 

(10h - -  ( ~ h ' -  (~h-h '  ~--- 0 modulo 27r ( 1 ) 

first given by Cochran (1955). 
A way of deriving the tangent formula is to assume 

that the true phase angles, q~h, of~the normalized 
structure factors, Eh, correspond to a maximum of 
the function 

Z = ~  E*EkEh-k. (2a) 
h k 

Since, in the summation, for every term E*hEkEh-k 
there is another of the form EhE*E*_k then Z is real 
and (2a) may be written as 

Z = ~  ~ IEhEkEh_kl COS (~Oh--(~k--(~h-k). (2b) 
h k 

The condition for an extremum is 

OZ/O~h = 0 
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for every h and application of this to (2b) gives 

OZ/~h= --IEhl Y IEkEh_k[ sin (~h-- (~k-- (~h_k) 
k 

=0. (3) 

This may be rearranged to give 

Y~ [EkEh-kl sin (¢k + ~0h-k) 
k 

tan e h = ~  Ek Eh_k[ COS (¢pk _t_ ~h_k) , (4) 
k 

which is the normal form of the tangent formula. 
Thus, if phases are driven to be self consistent with 
(4) they are taken to a maximum of Z and the expecta- 
tion is that the true phases will be near, if not quite 
at, a local maximum. 

The tangent formula tends, particularly for sym- 
morphic space groups, to produce pseudo-solutions 
characterized by statistically too small values for the 
triple-phase invariants given by the left-hand sides of 
(1). Frequently all the values are exactly zero; while 
the true phases may be near a local maximum of Z 
the pseudo-solutions will be at or close to the global 
maximum. Various ways of trying to avoid this 
behaviour have been suggested-for  example the 
statistically weighted tangent formula of Hull & Irwin 
(1978)-but ,  by and large, this is still a current 
difficulty in the application of direct methods. 

The basic Sayre tangent formula 

Sayre's equation (Sayre, 1952) may be written in the 
form 

A 
Fn = gh V ,~k Fk Fh-k, (5) 

where V is the volume of the unit cell and fn and gh 
are the scattering factors for the true equal atoms of 
the structure and for the 'squared' atoms respectively. 

An equation of the same form will be approxi- 
mately true even if the conditions required for Sayre's 
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equation, equal resolved atoms, do not hold. Thus, 
if we use Eh instead of Fh if the atoms are unequal 
and if only a subset of E ' s  is used we may write as 
an approximation 

Eh = KOh, (6) 

where K is an overall scale factor and 

Oh=(1/gh) ~, EkEh-k. (7) 
k 

The gh are proportional to the scattering factors for 
the squared structure and may be estimated from the 
volume in reciprocal space available for the convol- 
ution in (7). It should be noted that the subset of E 's  
may contain both those of large magnitude and ones 
that are very small or even of zero magnitude. 

The total least-squares residual for the Sayre 
equations corresponding to the set {h} is defined as 

R : E IEh- KGhl2/E IEhIL (8) 
h h 

The best K is found by considering R as a quadratic 
function of K with a minimum at 

K =Y. E*Gh/E IOh] 2. 
h h 

With this expression for K put into (8), 

where 

R = I - S ,  

S = (E E* Gh)2/(E IEhl2)(~ I Ghl2). (9) 
h h h 

S has been used as a figure of merit for the phase set 
{~h}. We have 

0 -  < S -  < 1 (10) 

and S = 1 is obtained only if all the Sayre equations 
are exactly satisfied. 

It is worth pointing out an important difference 
between (9) and (2). Z in (2) is simply the sum of 
the triplets while in (9) Z 2 is divided by ~h I Gh] 2, 
which is a sum of quartets. Z is related to ~ [ p ( X ) ]  3 d x ,  

while S is related to 

{ j" [ f l ( X ) ]  3 d x } 2 / ~  [ p ( X ) ]  4 dx. 

As a figure of merit (FOM) S combines features of 
two separate FOMs used in MULTAN. The 
numerator is similar to ABSFOM while that part of 
~h I Ghl 2 for the Gh corresponding to small Eh is similar 
to the PSIZERO FOM in MULTAN; it is to be 
expected that any phase-determining process that 
seeks a maximum of S should produce phases for 
the large E ' s  that automatically are consistent, 
according to the PSIZERO FOM, with the magni- 
tudes of the small E's.  

Following our previous method for deriving the 
standard tangent formula we now say that for an 

extremum of S we require, for all 1, 

aS/o~i = O. 

Applying this condition to expression (9) and re- 
arranging the result we find 

Im (tl)-(2T/3Q) Im (q~) 
tanqh-Re(tO_(2T/3Q) Re(ql), (11) 

where 

and 

tl = E ( 1 / gl + 1 / gh + 1 / gt--h) EhEl-h, (12) 
h 

ql = E El-h( 1 / g2) E Ek Eh-k, (13) 
h k 

T=E E*h (14) 
! 

Q=E E*ql=EIGhlL (15) 
! h 

If ql is excluded then (11) reduces to the normal 
tangent formula except for the factor (1/gl+ 1/gh+ 
1/gl-h). 

The terms in ql are derived from a special selection 
of quartet invariants- those with Eb El-h, Ek and 
Eh--k belonging to the set of large E 's  and with the 
cross terms Eh belonging either to this same set of 
large E ' s  or to the set of small E's.  Because the 
quartets are selected in this special way ql factorizes, 
as is shown in (13), and the computational cost of 
including the q~ in (11), the Sayre tangent formula, 
is only about twice that for the normal tangent for- 
mula, which contains only the terms t l. 

A weighting scheme 

The Sayre-equation residual, R, given by (8) can be 
made more discriminating by associating the two 
subsets of {h} corresponding to large and small E 's  
with different weights. Thus we write 

Rw=Y~ mh[Eh-KGnI2/y~IEnl 2, (16) 
h h 

where mh = 1 if Eh is one of the large E 's  and mh =/x, 
a constant, if it is one of the small (assumed zero) 
E's. The modified figure of merit, corresponding to 
(9), then becomes 

Sw=(E E*GhY/(E IEnl2)(E mnlGhl2). (17) 
h h h 

The Sayre tangent formula is still given by (11) but 
the quantities ql and Q are now given by 

q,=• El--h(mh/g 2) Y EkEh-k (18) 
h k 

and 

Q = ~ mh] Ghl 2. (19) 
h 
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This is the form of the Sayre tangent formula that we 
have used; the best results have been obtained when 
/x is about 5. 

S A Y T A N  

Equation (1 l) has been incorporated into a computer 
program called S A Y T A N ,  which, like R A N T A N  
(Yao Jia-xing, 1981), starts with random phases. The 
phases are refined by the repeated use of (l 1 ) but, in 
practice, it has been found necessary to introduce the 
quartet terms in a gradual way. If q, is given its full 
weight immediately then the phases tend to be 
trapped in randomness; the part of q, arising from 
weak quartets does not discriminate between random 
phases and true phases -as  is also true for the 
PSIZERO FOM. 

The first method we used for dealing with this 
problem, which was quite satisfactory, was to give q, 
a weight 

Wq = ( n - 1 ) / ( n  + c), (20) 

where n is the cycle number and c is a constant in 
the range 0 to 4. An alternative method, which gives 
a similar effect and has the advantage of not needing 
an arbitrary parameter, is to eliminate Wq but to keep 
Q fixed throughout the refinement at an estimate of 
its final true value, easily calculated from the Cochran 
distribution. We also add to Q a contribution from 
the small Eh based on a random-walk estimate from 
the Sayre-equation contributors. Experience of the 
PSIZERO FOM suggests that this is appropriate for 
a good set of phases. In the early stages of refinement 
the estimated Q is much bigger than the value given 
by (19) so that the factor (2T/3Q) in (11) is small 
for the first few cycles. 

It has also been found to be useful to weight 
individual phases in the triplet terms, as is usual in 
M U L T A N ,  so that (12) should be written 

f i=~(1 /g ,+ l /g .+ l /g ,_h)W.W,_ .E .E ,_ . .  (21) 
h 

In S A Y T A N  the way in which phase refinement 
involves calculated weights is similar to that for RAN- 
TAN. At the start the Wh are set to some low level 
(usually 0.25). When a new estimate for ~, is found 
from (11) we compute w~ = min (1, I t,I/5) and only 
update ~p, and w~ if w~ is above some preset level 
(usually in the range 0.25 to 0.4). In the original 
program the appropriate weights w, were also associ- 
ated with the quartet-derived terms so that, in place 
of (18), we used 

q,=Y. W,-nE,-h(mh/g 2) Y'. WkWh-kEkEh-k. (22) 
h k 

Actually we now use (18) rather than (22) and the 
results are not very different. In practice most of the 
wh approach unity after a few cycles of refinement 

and, as indicated above, the quartet terms contribute 
little in these early stages. However, it should be 
stressed that it is important to use (21) for t~ rather 
than (12) otherwise the results noticeably deteriorate. 

SA Y T A N  trials 

The first trial of S A Y T A N  was on the structure of 
11 - methyltri cyclo[4.4.1.0 ~'6]u ndeca-2,4, 7,9- tetraene- 
l l-carbonitrile, called MUCCAR (Bianchi, Pilati & 
Simonetta, 1978), ClaHjIN, space group P1, Z = 2  
with a=8.310,  b=7.026,  c = 9 . 5 0 8 ~ ,  a=100.89 ,  
fl =97.82 and y =  113.48 °. The form of the molecule 
is shown in Fig. 1. Thirty phase sets were generated 
with the following result: 

15 sets showed the complete structure (28 atoms) 
5 sets showed all but one atom 
8 sets showed between 19 and 24 atoms 
Table l shows the conventional M U L T A N  figures 

of merit and also the values of S,. for the 30 phase sets. 
For comparison a default run of M U L T A N 8 0 ,  

which generated 40 sets, showed no significant part 
of the structure at all. Another run of M U L T A N 8 0  
using the statistically weighted tangent formula con- 
tained one complete solution with the next best set 
showing about one half of the structure (parts of each 
molecule). 

SA Y T A N  was next tested on Cortisone (Declercq, 
Germain & Van Meerssche, 1972), C21H2805, space 
group P2~2~2~, Z =4  with a = 10.040, b = 23.649, c = 
7.784 A. The form of the molecule is shown in Fig. 
2. In 30 generated sets of phases there were three 
perfect solutions; figures of merit for these 30 sets 
are shown in Table 2. Two runs of M U L T A N 8 0  were 
made for CORTISONE, one under default conditions 
and the other using the statistically weighted tangent 
formula. Each run comprised 36 phase sets and no 
solutions were found. It seems that with M U L T A N 8 0  
the structure of CORTISONE tends to be obscured 
by an extensive 'chicken-wire' pattern of peaks. 

In another test of S A Y T A N  the E magnitudes 
calculated from the atomic coordinates of COR- 
TISONE were used. In this case there were ten perfect 
solutions in 30 phase sets. 

Successful trials have been made on other known 
structures and unknown structures with 50-100 atoms 
in the asymmetric unit have also been solved. One 

H3C C - N 

Fig. 1. A molecule of MUCCAR. There are two molecules in the 
unit cell of space group PI. 
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Table 1. Figures of merit for the 30 phase sets for MUCCAR given by SA YTAN 

In the type-of-solut ion co lumn ' t he  number  of  atoms in the E map  is indicated by A(28),  B(27), C(19-24) ,  D ( n o  solution).  

Combined  Sayre Type  o f  
Set A B S F O M  P S I Z E R O  R E S I D  F O M  F O M  solut ion 

1 1.2134 1-328 17.94 1.7298 0-764 C 
2 1.1988 1.256 17-33 1.9391 0-779 A 
3 1.1451 1.392 14-90 2.4860 0.807 A 
4 1.2140 1.356 18.10 = set 1 0-761 C 
5 1-2080 1.523 19-05 1.2852 0-725 C 
6 1.1803 1.113 15.51 2.5305 0.808 A 
7 1.1845 1.143 15.70 =set 6 0.808 A 
8 0.7876 3.077 18.66 0.1088 0.727 C 
9 1.1807 1.345 17.41 1-8469 0.772 C 

10 1.1407 1.368 14-84 = set 3 0.809 A 
11 1.1791 1.217 15.54 2.4493 0.796 A 
12 1.0108 1.795 14.32 2.3003 0.756 C 
13 1.1796 1.274 ~ 18.39 1.6268 0.769' C 
14 1-0759 1.463 13.98 2.6546 0.785 B 
15 1.2126 i.349 18.68 1.5118 0.770 B 
16 1.2050 1.356 17-97 1.6979 0.775 A 
17 1.1956 1.229 17.19 = set 2 0-789 A 
18 1.1493 1.383 16.96 1.9306 0.775 A 
19 1.1130 1.357 14.09 2.7179 0.798 A 
20 1.1797 1.077 15-73 = set 6 0.811 A 
21 1.1814 1.456 17.08 1.8617 0.778 B 
22 1.2035 1.295 17.87 1.7666 0.776 B 
23 0.8126 2.391 17.30 0-9716 0.728 C 
24 1.1982 1.189 17.04 2-0660 0.787 A 
25 1.1792 1.212 16.21 2.2686 0.789 B 
26 1.1926 1.207 17.31 1.9769 0.784 A 
27 1.1814 1.264 16.68 2.1069 0.791 A 
28 1-1896 1.156 16.43 2.2524 0.792 A 
29 1-0996 1.847 15.74 1.9154 0.753 D 
30 0.9208 2-644 13.95 1.7659 0.714 D 

Table 2. Figures of merit for 30 phase sets for COR- 
TISONE given by SA YTAN 

The sets marked  with * are complete  solutions. 

Combined  
Set A B S F O M  P S I Z E R O  R E S I D  FOM 

l 1.0296 1-025 19.68 2.8922 
2 0.6713 1.160 28.98 2.2162 
3 0.2176 1.091 50.78 1.2220 
4 0.7854 1.370 28.71 1.9886 
5 0.6290 1.461 29.95 1.7787 
6 0.5530 1-396 33.15 1.7004 
7 0-9149 1.322 27.12 2.1525 
8 0-7582 1.358 26.17 2-1100 
9 0.5914 1-745 35.14 1.1756 

l0 0.6489 1.220 29"39 2.1162 
II 0.9395 !.543 24.74 1-9823 
12 0.5723 1.329 33-71 1.7659 
13 0.4927 0.952 34.62 2.1872 
14 0.9200 1-562 26.19 1.8891 
15 0.5675 1.132 31.97 2.0944 
16 0-9524 1.417 26.19 2.0820 
17 1.0207 1.045 19-34 = set 1 
18 0.7004 1.290 30.52 1.9892 
19 0.7045 1.067 29.25 2-3314 
20 0.5808 1.221 33.09 1.9341 
21 0.6788 1.376 27.45 . 2.0110 
22 0.8091 1.455 26.62 1.9796 
23 0.6233 1.114 30.92 2.1772 
24 1-0239 1.039 19.35 . =set l 
25 0.5668 1.208 30-83 2.0479 
26 0.4393 1.133 38-87 1.7535 
27 0.4270 1.096 38.95 1.7945 
28 0.4408 1-014 • 38.40 1.9270 
29 0.6597 1.245 29.28 2.0923 
30 0.8545 2.048 30.88 1.0428 

Sayre FOM 

0.693* 
0.518 
0.247 
0.562 
0.539 
0.569 
0-574 
0.551 
0- 547 
0.529 
0-564 
0.541 
0.568 
0.572 
0.577 
0.531 
0-703* 
0.539 
0.513 
0.519 
0.567 
0.558 
0.587 
0.695* 
0.556 
0.506 
0.397 
0.513 
0-533 
0.524 

failure with a known structure has been with ergocal- 
ciferol (Hull, Leban, White & Woolfson, 1976), a 
notoriously difficult structure for direct methods. 
However, when E magnitudes were used that were 
calculated from atomic coordinates one perfect sol- 
ution was obtained with SAYTAN. This, plus the 
CORTISONE experience, suggests that the quality 
of data may be of importance in the eitectiveness of 
the Sayre tangent formula. 

W e  w i s h  t o  r e c o r d  o u r  g r a t i t u d e  t o  t h e  S c i e n c e  a n d  

E n g i n e e r i n g  R e s e a r c h  C o u n c i l  a n d  t h e  D e u t s c h e  F o r -  

s c h u n g s g e m e i n s c h a f t ,  w h i c h  h a v e  f u n d e d  t h i s  w o r k .  

W e  a r e  a l s o  g r a t e f u l  f o r  h e l p f u l  d i s c u s s i o n s  w i t h  D r  

P .  M a i n  w h o  h a s  p o i n t e d  o u t  r e l a t i o n s h i p s  o f  t h i s  

w o r k  t o  t h e  l e a s t - s q u a r e s  t a n g e n t  f o r m u l a  d e v e l o p e d  

b y  h i m s e l f  a n d  S. F i s k e  ( F i s k e ,  1 9 8 2 ) .  

(3=0 

OH 

O" 

Fig. 2. A molecule  of  C O R T I S O N E .  
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Abstract 

A simple experimental modification to the A~, A20 
technique for measuring single-crystal Bragg reflec- 
tions has been demonstrated [Mathieson & Stevenson 
(1984). Aust. J. Phys. 37, 657-665]. This leads to a 
significant improvement in this technique in that the 
source component is reduced to a minor (angular) 
role, so that the greater resolution-capability/infor- 
mation-content, inherent in the Aw, ,420 method rela- 
tive to the conventional/to., profile method, is further 
enhanced. With only two major components in the 
two-dimensional distribution, the individual distribu- 
tions of these components can be determined with 
some accuracy. These components are the reflectivity 
(often referred to previously as the mosaic spread) 
and the wavelength distribution. The resolution func- 
tion, R(`4w, `420), can be estimated from the experi- 
mental parameters and is sufficiently small that the 
deconvoluted reflectivity for imperfect crystals is 
derivable. This procedure is demonstrated, in the 
present case, for a small single crystal of CulnSe2. 

I. Introduction 

The basic design of the single-crystal X-ray diffrac- 
tometer was established by Bragg (1914). In essence, 
it has not changed a great deal nor has the measure- 
ment procedure associated with it. This procedure 
involves traversing a single reflection by changing the 
orientation of the specimen crystal, step by step, and 
recording, at each step, Aw, the diffracted intensity 
passed through a relatively wide aperture in front of 
the detector, thereby providing the one-dimensional 
intensity profile, I(Aw), of the reflection. The main 
purpose of the original instrument was the estimation 
of the integrated intensity, ~ l(Ato) dAw. 

For several decades, this instrument was over- 
shadowed by photographic recording, using effec- 
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tively a very large (or no) aperture. Then, in the 1950's, 
the X-ray diffractometer was resurrected as an instru- 
ment for quantitative measurements on small single 
crystals (see Arndt & Willis, 1966), and Alexander & 
Smith (1962) carried out an analysis of the relation- 
ship of the profile curve I(Ato) to what they nomi- 
nated as the various major components of the experi- 
ment. They assumed the probable functional form, 
in terms of the one variable Ato, of a number of 
components, the mosaic spread, /x, the source size, 
o-, the wavelength distribution, A, and the specimen- 
crystal size, c. The theoretical intensity curve, 
l(Ato)~,.<a.c, was derived by sequential convolution 
of the functions. In this analysis, however, there was 
one component whose parametric relevance was 
largely ignored, namely the aperture in front of the 
detector. The variation of signal distribution across 
the aperture, I(A20), for a given value of Aw, was 
not examined or explored, only the outer limits 
necessary to ensure collection of the total signal 
within the specimen scan limits were investigated 
( 'minimum receiving aperture'). Hence, what is 
measured under the circumstances of the conven- 
tional procedure is detailed in (1): 

f A202 
l(Ao))tz,o.X,c,A(a20 ) = l(Aw, A20),~.,~.,.c dA20, 

• /A2O I 
(1) 

and it is evident that one is really dealing with a 
five-component system in which the square-wave 
function, A(A20), corresponding to the aperture, is 
the largest component, in angular terms, by the nature 
of the determination of its outer limits. 

The main aim of the analysis by Alexander & Smith 
(1962) was directed at measuring relative integrated 
intensities with high reliability. If, however, one 
wishes to use the diftractometer to extract, from such 
one-dimensional intensity measurements, informa- 
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